

1

Effects of vertical separation on the rail sector's economic performance in the EU context

- **Quantitative research**: three measures of performance:
 - Efficient use of inputs to produce outputs
 - → cost modelling (regression analysis)
 - Competitive performance against other transport modes
 - → rail modal share (regression analysis)
 - Value-for-money for state budgets
 - → traffic volume per € of state funding (data comparison)
- Qualitative research:
 - Rail sector value chain
 - → description of the **fundamental transactions** in the railway sector
 - Incentive analysis
 - → identifying (mis)alignment of incentives between RU and IM
 - Unbundling and realignment
 - → description of **realignment mechanisms** and their limitations

19 June 2014

QUANTITATIVE RESEARCH

- Cost regression
- Modal share regression
- Value-for-money for state budgets

Quantitative research

REVIEW OF UNBUNDLING LITERATURE

- Many inconsistencies
 - No evidence that unbundling is better/worse
 - Most recent study: results vary with train density
- Many deficiencies
 - Correct and detailed data is a major problem
 - Mostly insufficient account taken of differences between reform options (VS, HC, VI)
 - Our database

OUR CONTRIBUTION

- More and better data:
 - 26 OECD-countries (1994-2010)
 - Adding British data
 - Updating from 2007 to 2010
 - Verified data by CER members
- More refined approach
 - Inclusion of structural dummies (VS/HC/VI)
 - Improved modelling of market opening dummies
 - Improved accuracy of timing of reforms
 - Inclusion of train density variable and share of freight revenue

19 June 2014

Cost regression: Model

- 26 OECD countries 1994-2010
- Total rail industry cost = f (control variables, test variables)

Control variables cost drivers not related to policy)	Test variables (policy variables that may affect costs)
Passenger output Freight output Route length Technology index Wage rate Energy price Materials price Capital price	 Vertical separation dummy variable Vertical separation dummy variable * train density Vertical separation dummy variable * freight revenue proportion Holding company dummy variable Holding company dummy variable * train density Holding company dummy variable * freight revenue proportion Horizontal separation dummy variable Passenger competition measure Freight competition dummy variable

(c) inno-V / TU Delft

Econometric model results

Vertical separation dummy variable Vertical separation dummy variable x density (V) RD _{vs} Vertical separation dummy variable x freight proportion (R) Holding company dummy variable	0.0041 0.3760 *** 0.1222 ***
RD _{vs} Vertical separation dummy variable x freight proportion (R) Holding company dummy variable	0.1222 ***
D _{HC} Holding company dummy variable	
	0.0546 *
	-0.0546 *
/D _{HC} Holding company dummy variable x density (V)	0.0391
RD _{HC} Holding company dummy variable x freight proportion (R)	-0.0132
D _{HS} Horizontal separation dummy variable	-0.2718 ***
CMP Passenger competition (sum of dummies measure)	-0.0081
D _{CF} Freight competition dummy	0.0388
Break-even point train density ratio	0.99
Train density at the break-even point	62.7
R squared (cost equation)*	0.980

Cost regression: Summary of key findings

- At higher traffic densities, vertical separation increases costs
 - At mean traffic densities, vertical separation does not significantly change costs
 - → [Higher traffic densities may cause more coordination issues in a separated environment]
- At higher share of freight in total revenues, vertical separation increases costs
 - → [Freight/mixed traffic may cause more coordination issues in a separated environment than passenger traffic]

Projected costs of vertical separation

Billions of Euros (2005 constant prices)	Current density levels	Current density levels + 10%	Current density levels + 20%	Current density levels + 50%*
Yearly cost of imposing vertical separation across EU (for those countries not already separated)	5.8	7.8	9.6	14.5

Note: * It is recognised that higher growth would at some point require increased capacity

 Re-running the model without Japan, South Korea and Turkey does not alter the conclusion significantly (7.4 billion Euro cost in place of 5.8 billion Euros above)

19 June 2014

Caveats

- Some data issues remain
 - Though the data is as (or more) reliable than previous studies
- Detailed projections by country
 - Should be undertaken before making specific recommendations for individual countries
 - Would require a detailed, bottom-up model, taking into account different mix of services across network
- Small/local railways excluded
 - Results should not be extrapolated to small, local railways (out of sample)

Intermediate conclusions Quantitative part

- No evidence that vertical separation is unconditionally superior or inferior to other structural options
- Competition
 - Does not appear to work better or worse under vertical separation
 - Only weak effects on performance could be measured
- → Imposing vertical separation dogmatically to the whole European rail sector is likely to increase total costs
- So something happens to costs when there is vertical separation something that is not explained by competition
- → Qualitative part

QUALITATIVE RESEARCH:

- Rail sector value chain
- Incentive misalignment analysis
- Realignment mechanisms

Incentive misalignment:

Concept – actors – economic effects

- Misalignment of incentives (definition)
 - VS = fully separated IM alongside RUs
 - Each subject to set of incentives (by market and/or regulation)
 - Each optimises <u>own</u> economic position
 - Optimality for each individual actor...
 - but not necessarily for rail sector as a whole!
 - → Economic losses may occur due to sub-optimal choices compared better aligned (more cooperative) set-up
- Example of potentially resulting economic losses:
 - Additional capacity investment needs
 - Additional operational costs
 - · Lost opportunities for revenue-making

Coordination issues: Incentive misalignment & realignment examples						
Investment coordination	Production planning coordination	Timetable planning coordination	Production (real- time) coordination			
 Extension / decommissioning Upgrading / downgrading 	 Quality of resources and reliability Small/medium scale investments 	 Maintenance/ renewal versus operations Timetable robustness 	Disruption handlingFeed-back loops			
 Rail2000 (CH) High frequency rail (NL) RUS/IIP (GB) Prioritisation (FR) Rolling stock and power supply (GB) ERTMS/ETCS Synergy real estate – rail 	Coordination of small scale / high impact investments (JP) IM/RU cooperation/ misalignment (NL, FR, GB) Trade-offs track maintenance / total system costs	Timetabling and path allocation (CH, GB, FR, NL) Track possessions and commercial consequences (FR, PL)	Traffic control centres colocation (GB, NL, FR) Passenger information (NL) Feed-back loops (JP, NL)			

(c) inno-V / TU Delft 9

Findings on incentive misalignment

- Vertical separation can generate substantial incentive misalignments between IM and RUs
 - Likely to be larger than transaction costs generated by vertical separation
- Misalignment issues increase in importance
 - When investments are required
 - In growing railways (e.g. growing demand)
 - · For technical innovation
 - And especially with higher train densities
- Hybrid re-alignment arrangements have started to appear in unbundled railways to counter these effects
 - It is unlikely that these will be able to solve all issues
 - Especially those issues that would involve money transfers between IM and RUs
- → Misalignment issues urgently require more attention and analysis in order to make sound choices between structural options

19 June 2014

Overview of findings on the effects of vertical separation

- System cost effects
 - Depend on train density and share of freight
 - Negative aggregate effect for the EU if all switch to VS (costs increase)
- Rail modal share effects
 - No significant difference between VS and holding company model, also when looking at impact with competition
- Value for money for state budgets (analysis limited to 5 countries)
 - No pattern to suggest an advantage for VS
- Market entry
 - Can be significant and growing both with and without VS
- Misalignment of incentives under unbundling
 - Effects are important and require much more attention
 - Need for re-alignment mechanisms (see e.g. GB, NL)

19 June 2014

(c) inno-V / TU Delft

Contact and sources

- For further questions, please take contact with:
 - Didier van de Velde, inno-V (Amsterdam): dv@inno-v.nl
- Sources:
 - The main EVES-Rail report can be downloaded from CER's website (www.cer.be). The citation information for this report is:
 - van de Velde, D., C. Nash, A. Smith, F. Mizutani, S. Uranishi, M. Lijesen and F. Zschoche (2012), "EVES-Rail Economic effects of Vertical Separation in the railway sector", Report for CER Community of European Railway and Infrastructure Companies, by inno-V (Amsterdam) in cooperation with University of Leeds ITS, Kobe University, VU Amsterdam University and civity management consultants, Amsterdam/Brussels, 188 pp.
 - The rail value-chain analysis included in the EVES-Rail report is based on:
 - van de Velde, D.M. (2012), "A transaction-based Transport Sector Model: Application to the railway sector to discuss unbundling and incentive misalignment", mimeo, Delft University of Technology, Delft.

19 June 2014

(c) inno-V / TU Delft

11