A simulation model of a long-distance passenger

 rail serviceOndřej Krčál, Rostislav Staněk Masaryk University, Brno

CPR CEEC 2014
Prague, 19. 6. 2014

Motivation

The aim of the EC is to introduce competition into rail transport.
Many challenges - e.g.

- designing franchise contracts
- predicting outcome of open access

Motivation

The aim of the EC is to introduce competition into rail transport.
Many challenges - e.g.

- designing franchise contracts
- predicting outcome of open access

Computer simulation models - a useful approach

Motivation

The aim of the EC is to introduce competition into rail transport.
Many challenges - e.g.

- designing franchise contracts
- predicting outcome of open access

Computer simulation models - a useful approach

Literature

Two computer simulation models

- PRAISE model (Preston et al. 1999, Whelan \& Johnson 2004, Johnson \& Nash 2012)
- Steer Davies Gleave (2004)

These models do not search for the optimum/equilibrium fares and timetables.

Literature

Two computer simulation models

- PRAISE model (Preston et al. 1999, Whelan \& Johnson 2004, Johnson \& Nash 2012)
- Steer Davies Gleave (2004)

These models do not search for the optimum/equilibrium fares and timetables.

Aim of the paper

Several versions of the model that approximate the optimum/ equilibrium fares and timetables.

Two types of models

1. stylized models - testing efficiency of algorithms used against analytical solutions
2. more realistic versions of the model

Aim of the paper

Several versions of the model that approximate the optimum/ equilibrium fares and timetables.

Two types of models

1. stylized models - testing efficiency of algorithms used against analytical solutions
2. more realistic versions of the model

The paper presents the second type of the model.

Aim of the paper

Several versions of the model that approximate the optimum/ equilibrium fares and timetables.

Two types of models

1. stylized models - testing efficiency of algorithms used against analytical solutions
2. more realistic versions of the model

The paper presents the second type of the model.

Setup of the model

Passengers and train departures located along two lines.
Lines represent 24 hours at two terminal stations A and B.

Setup of the model

Passengers and train departures located along two lines.
Lines represent 24 hours at two terminal stations A and B.
The location of

- passengers (black dots) $=$ preferred time of departure
- train departures (red squares) $=$ time of departure

Setup of the model

Passengers and train departures located along two lines.
Lines represent 24 hours at two terminal stations A and B.
The location of

- passengers (black dots) $=$ preferred time of departure
- train departures (red squares) $=$ time of departure

The demand side

500 passengers in each station with the same reservation price p^{R}.
Passenger j chooses the train i with minimum

$$
p+w h_{i j}{ }^{2}
$$

where

The demand side

500 passengers in each station with the same reservation price p^{R}.
Passenger j chooses the train i with minimum

$$
p+w h_{i j}^{2}
$$

where

The demand side

500 passengers in each station with the same reservation price p^{R}.
Passenger j chooses the train i with minimum

$$
p+w h_{i j}^{2}
$$

where

- p is the price set by the TOC
- w is the per-minute schedule-delay cost

The demand side

500 passengers in each station with the same reservation price p^{R}.
Passenger j chooses the train i with minimum

$$
p+w h_{i j}^{2}
$$

where

- p is the price set by the TOC
- w is the per-minute schedule-delay cost
- $h_{i j}$ is the schedule delay in minutes

The demand side

500 passengers in each station with the same reservation price p^{R}.
Passenger j chooses the train i with minimum

$$
p+w h_{i j}^{2}
$$

where

- p is the price set by the TOC
- w is the per-minute schedule-delay cost
- $h_{i j}$ is the schedule delay in minutes
and no train if $p+w h_{i j}^{2}>p^{R}$.

The demand side

500 passengers in each station with the same reservation price p^{R}.
Passenger j chooses the train i with minimum

$$
p+w h_{i j}^{2}
$$

where

- p is the price set by the TOC
- w is the per-minute schedule-delay cost
- $h_{i j}$ is the schedule delay in minutes
and no train if $p+w h_{i j}^{2}>p^{R}$.

Preferred departure times

Inspired by realistic travel patterns (e.g. Prague-Ostrava line)
Three similar randomly generated distributions ($\mathrm{RI}=1,2,3$)

Preferred departure times

Inspired by realistic travel patterns (e.g. Prague-Ostrava line)
Three similar randomly generated distributions ($\mathrm{RI}=1,2,3$)
Distribution for $\mathrm{RI}=1$:

Preferred departure times

Inspired by realistic travel patterns (e.g. Prague-Ostrava line)
Three similar randomly generated distributions ($\mathrm{RI}=1,2,3$)
Distribution for $\mathrm{RI}=1$:

Hours

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

- $p Q$ are revenues
- n number of departures

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

- $p Q$ are revenues
- n number of departures
- C^{j} operational cost of a trip

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

- $p Q$ are revenues
- n number of departures
- C^{j} operational cost of a trip
- m number of trains

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

- $p Q$ are revenues
- n number of departures
- C^{j} operational cost of a trip
- m number of trains
- C^{t} fixed cost of a train for 24 hours

The supply side

Infrastructure/technology constraints:

- trains are allowed to depart every r minutes
- turn-around time is u minutes

Profit of a TOC:

$$
\Pi=p Q-n C^{j}-m C^{t}
$$

where

- $p Q$ are revenues
- n number of departures
- C^{j} operational cost of a trip
- m number of trains
- C^{t} fixed cost of a train for 24 hours

Simulations

I present the results of two simulations:

- monopoly market
- entry

The simulations are

1. initialized
2. simulated for a number of periods

Simulations

I present the results of two simulations:

- monopoly market
- entry

The simulations are

1. initialized
2. simulated for a number of periods

Initialization - monopoly market

The TOC starts with

- a uniform fare $p_{0}=p^{R}$
- 48 initial departures served by 6 trains

Initialization - monopoly market

The TOC starts with

- a uniform fare $p_{0}=p^{R}$
- 48 initial departures served by 6 trains
- departures every $r=60$ minutes starting at 0:00
- the turn-around time $u=180$ minutes

Initialization - monopoly market

The TOC starts with

- a uniform fare $p_{0}=p^{R}$
- 48 initial departures served by 6 trains
- departures every $r=60$ minutes starting at 0:00
- the turn-around time $u=180$ minutes

Initialization - monopoly market

The TOC starts with

- a uniform fare $p_{0}=p^{R}$
- 48 initial departures served by 6 trains
- departures every $r=60$ minutes starting at 0:00
- the turn-around time $u=180$ minutes

Initialization - entry

The incumbent starts with

- an initial uniform fare $p_{0}^{l}=0$
- profit-maximizing timetable

The entrant starts with

- an initial uniform fare $p_{0}^{E}=0$
- 48 initial departures served by 6 trains

Initialization - entry

The incumbent starts with

- an initial uniform fare $p_{0}^{l}=0$
- profit-maximizing timetable

The entrant starts with

- an initial uniform fare $p_{0}^{E}=0$
- 48 initial departures served by 6 trains
- departures every $r^{E}=60$ minutes starting at 0:30
- the turn-around time $u^{E}=180$ minutes

Initialization - entry

The incumbent starts with

- an initial uniform fare $p_{0}^{l}=0$
- profit-maximizing timetable

The entrant starts with

- an initial uniform fare $p_{0}^{E}=0$
- 48 initial departures served by 6 trains
- departures every $r^{E}=60$ minutes starting at 0:30
- the turn-around time $u^{E}=180$ minutes

Initialization - entry

The incumbent starts with

- an initial uniform fare $p_{0}^{l}=0$
- profit-maximizing timetable

The entrant starts with

- an initial uniform fare $p_{0}^{E}=0$
- 48 initial departures served by 6 trains
- departures every $r^{E}=60$ minutes starting at 0:30
- the turn-around time $u^{E}=180$ minutes

Simulation

After the initialization the model runs in periods.
Each simulation has two phases:

- fare-adjusting phase (T_{P} periods) - only fares adjusted
- exit phase - consists of exit cycles

Simulation

After the initialization the model runs in periods.
Each simulation has two phases:

- fare-adjusting phase (T_{P} periods) - only fares adjusted
- exit phase - consists of exit cycles

Each exit cycle has E periods. In a given period, the simulation may follow one or two of the four subsequent steps:

Simulation

After the initialization the model runs in periods.
Each simulation has two phases:

- fare-adjusting phase (T_{P} periods) - only fares adjusted
- exit phase - consists of exit cycles

Each exit cycle has E periods. In a given period, the simulation may follow one or two of the four subsequent steps:

1. elimination - period 1
2. test - period $E-1$
3. adjusting fares - every period
4. adjusting departure times - period e^{*}

Simulation

After the initialization the model runs in periods.
Each simulation has two phases:

- fare-adjusting phase (T_{P} periods) - only fares adjusted
- exit phase - consists of exit cycles

Each exit cycle has E periods. In a given period, the simulation may follow one or two of the four subsequent steps:

1. elimination - period 1
2. test - period $E-1$
3. adjusting fares - every period
4. adjusting departure times - period e^{*}

Adjusting fares

Each period t

TOC chooses the fare

- p_{t-1}
- $p_{t-1}+\epsilon_{t}$
- $p_{t-1}-\epsilon_{t}$
in order to maximize its profit Π_{t}.

Adjusting fares

Each period t

TOC chooses the fare

- p_{t-1}
- $p_{t-1}+\epsilon_{t}$
- $p_{t-1}-\epsilon_{t}$
in order to maximize its profit Π_{t}.

Adjusting departure times

In period $t=e^{*}$ of each entry cycle
Each train in a random order chooses the departure time

- $l_{i t-1}$
- $l_{\text {it }-1}+r$
- $l_{i t-1}-r$
in order to maximize TOC's profit Π_{t} and adjusts its departure time.

Adjusting departure times

In period $t=e^{*}$ of each entry cycle
Each train in a random order chooses the departure time

- $l_{i t-1}$
- $l_{i t-1}+r$
- $l_{i t-1}-r$
in order to maximize TOC's profit Π_{t} and adjusts its departure time.

Elimination

In period 1 of each entry cycle
The TOC eliminates departures using one of the options:

1. one random pair of departures: $\pi_{1} \sim U(0.5,1)$
2. two random pairs of departures: $a\left(1-\pi_{1}\right)$
3. one random train: $(1-a)\left(1-\pi_{1}\right)$, where $a \sim U(0.1,0.9)$

Elimination

In period 1 of each entry cycle
The TOC eliminates departures using one of the options:

1. one random pair of departures: $\pi_{1} \sim U(0.5,1)$
2. two random pairs of departures: $a\left(1-\pi_{1}\right)$
3. one random train: $(1-a)\left(1-\pi_{1}\right)$, where $a \sim U(0.1,0.9)$

Two important properties:

- eliminates the same number of trains from both cities
- the elimination is random

Elimination

In period 1 of each entry cycle
The TOC eliminates departures using one of the options:

1. one random pair of departures: $\pi_{1} \sim U(0.5,1)$
2. two random pairs of departures: $a\left(1-\pi_{1}\right)$
3. one random train: $(1-a)\left(1-\pi_{1}\right)$, where $a \sim U(0.1,0.9)$

Two important properties:

- eliminates the same number of trains from both cities
- the elimination is random

Test

In period $E-1$ of each entry cycle
If the elimination increases profit of the operator, it is permanent. Otherwise, the situation from period 1 of exit cycle is reset.

Test

In period $E-1$ of each entry cycle
If the elimination increases profit of the operator, it is permanent. Otherwise, the situation from period 1 of exit cycle is reset.

The simulation ends after f subsequent resets.

Test

In period $E-1$ of each entry cycle
If the elimination increases profit of the operator, it is permanent. Otherwise, the situation from period 1 of exit cycle is reset.

The simulation ends after f subsequent resets.

Simulations - monopoly market

Simulations for parameters:

- fare-adjusting phase $T_{P}=100$ periods
- exit cycle $E=5$ periods (departure time adjustment $e^{*}=2$)
- reservation price $p^{R}=200$
- price-adjustment $\epsilon_{t} \sim U(0,1]$
- per-minute schedule-delay cost $w=1 / 60$
- the simulation ends after $f=100$ cycles
- operational cost of a trip $C_{j}=2,000$
- daily cost of a train $C_{t}=\{7,000 ; 10,000 ; 13,000\}$
- random passenger distributions $\mathrm{RI}=1,2,3$
- random-seed 1, 2, 3,..., 2000

Total number of simulations is 18,000 (Metacentrum).

Results

C_{t}	RI	S	trains m	depart. n	profit π	price p
7,000	1	4	6	28	$59,027(0.56)$	$175(0.0006)$
	2	43	6	28	$57,411(2.36)$	$175(0.0027)$
	3	45	6	28	$59,257(2.54)$	$175(0.0028)$
	1	5	5	24	$41,693(4.3)$	$175(0.005)$
	2	40	5	24	$42,185(4.1)$	$175(0.005)$
	3	36	5	22	$42,044(3.1)$	$175(0.004)$
13,000	1	457	3	12	$29,281(22.3)$	$175(0.10)$
	2	102	3	14	$32,548(16.6)$	$173(1.22)$
	3	106	3	14	$29,804(4.9)$	$173(0.03)$

The profit π and price p show MEAN (SD) of the S simulations producing the same timetable

Results

C_{t}	RI	S	trains m	depart. n	profit π	price p
7,000	1	4	6	28	$59,027(0.56)$	$175(0.0006)$
	2	43	6	28	$57,411(2.36)$	$175(0.0027)$
	3	45	6	28	$59,257(2.54)$	$175(0.0028)$
	1	5	5	24	$41,693(4.3)$	$175(0.005)$
	2	40	5	24	$42,185(4.1)$	$175(0.005)$
	3	36	5	22	$42,044(3.1)$	$175(0.004)$
13,000	1	457	3	12	$29,281(22.3)$	$175(0.10)$
	2	102	3	14	$32,548(16.6)$	$173(1.22)$
	3	106	3	14	$29,804(4.9)$	$173(0.03)$

The profit π and price p show MEAN (SD) of the S simulations producing the same timetable

Results

C_{t}	RI	S	trains m	depart. n	profit π	price p
7,000	1	4	6	28	$59,027(0.56)$	$175(0.0006)$
	2	43	6	28	$57,411(2.36)$	$175(0.0027)$
	3	45	6	28	$59,257(2.54)$	$175(0.0028)$
	1	5	5	24	$41,693(4.3)$	$175(0.005)$
	2	40	5	24	$42,185(4.1)$	$175(0.005)$
	3	36	5	22	$42,044(3.1)$	$175(0.004)$
13,000	1	457	3	12	$29,281(22.3)$	$175(0.10)$
	2	102	3	14	$32,548(16.6)$	$173(1.22)$
	3	106	3	14	$29,804(4.9)$	$173(0.03)$

The profit π and price p show MEAN (SD) of the S simulations producing the same timetable

Results

C_{t}	RI	S	trains m	depart. n	profit π	price p
7,000	1	4	6	28	$59,027(0.56)$	$175(0.0006)$
	2	43	6	28	$57,411(2.36)$	$175(0.0027)$
	3	45	6	28	$59,257(2.54)$	$175(0.0028)$
	1	5	5	24	$41,693(4.3)$	$175(0.005)$
	2	40	5	24	$42,185(4.1)$	$175(0.005)$
	3	36	5	22	$42,044(3.1)$	$175(0.004)$
13,000	1	457	3	12	$29,281(22.3)$	$175(0.10)$
	2	102	3	14	$32,548(16.6)$	$173(1.22)$
	3	106	3	14	$29,804(4.9)$	$173(0.03)$

The profit π and price p show MEAN (SD) of the S simulations producing the same timetable

Departure times $\left(C_{t}=7,000\right)$

Departure times $\left(C_{t}=10,000\right)$

Departure times $\left(C_{t}=13,000\right)$

Simulations - entry

Simulations for parameters:

- random passenger distributions with random seed $\mathrm{RI}=3$ and a daily cost of a train $C_{t}^{\prime}=\{7,000 ; 10,000 ; 13,000\}$
- exit cycle $E=50$ periods (departure time adjust. $e^{*}=10$)
- price-adjustment $\epsilon_{t} \sim U(0,2]$
- daily cost of a train $C_{t}^{E}=\left\{C_{t}^{l} ; C_{t}^{\prime}-3,000 ; C_{t}^{\prime}-6,000\right\}$
- random-seed 1, 2, 3,..., 2000

Total number of simulations is 18,000 (Metacentrum).

Results

C_{t}^{\prime}	C_{t}^{E}	m^{E}	n^{E}	p^{E}	p^{\prime}	π^{E}
7,000	1,000	$2.2(0.4)$	$4.6(1)$	$128(10)$	$174(1)$	$31,160(932)$
	4,000	$1.7(0.5)$	$4.2(0.6)$	$121(13)$	$174(0.7)$	$24,643(570)$
	7,000	$1(0.2)$	$4.4(0.8)$	$106(6)$	$174(1.2)$	$20,586(601)$
	4000	$1.32(0.5)$	$3.1(1.46)$	$108(4.8)$	$170(2.8)$	$17,974(1,199)$
	7,000	$1.04(0.2)$	$2.58(1.3)$	$107(6.9)$	$170(1.6)$	$14,584(1,232)$
	10,000	$1(0)$	$2.5(1)$	$106(5.1)$	$170(1.7)$	$11,566(1,222)$
	7,000	$1.33(0.5)$	$5.1(1.6)$	$112(13)$	$156(5)$	$8,844(1,424)$
13,000	10,000	$1.06(0.2)$	$4.34(0.95)$	$109(12)$	$156(4.2)$	$5,634(1,586)$
	13,000	$1(0)$	$4(0.6)$	$108(11)$	$156(4)$	$2,731(1,738)$

Table shows show MEAN (SD) of 100 simulations with the highest profit of the entrant π_{E}.

Results

C_{t}^{\prime}	C_{t}^{E}	m^{E}	n^{E}	p^{E}	p^{\prime}	π^{E}
7,000	1,000	$2.2(0.4)$	$4.6(1)$	$128(10)$	$174(1)$	$31,160(932)$
	4,000	$1.7(0.5)$	$4.2(0.6)$	$121(13)$	$174(0.7)$	$24,643(570)$
	7,000	$1(0.2)$	$4.4(0.8)$	$106(6)$	$174(1.2)$	$20,586(601)$
	4000	$1.32(0.5)$	$3.1(1.46)$	$108(4.8)$	$170(2.8)$	$17,974(1,199)$
	7,000	$1.04(0.2)$	$2.58(1.3)$	$107(6.9)$	$170(1.6)$	$14,584(1,232)$
	10,000	$1(0)$	$2.5(1)$	$106(5.1)$	$170(1.7)$	$11,566(1,222)$
	7,000	$1.33(0.5)$	$5.1(1.6)$	$112(13)$	$156(5)$	$8,844(1,424)$
13,000	10,000	$1.06(0.2)$	$4.34(0.95)$	$109(12)$	$156(4.2)$	$5,634(1,586)$
	13,000	$1(0)$	$4(0.6)$	$108(11)$	$156(4)$	$2,731(1,738)$

Table shows show MEAN (SD) of 100 simulations with the highest profit of the entrant π_{E}.

Results

C_{t}^{\prime}	C_{t}^{E}	m^{E}	n^{E}	p^{E}	p^{\prime}	π^{E}
7,000	1,000	$2.2(0.4)$	$4.6(1)$	$128(10)$	$174(1)$	$31,160(932)$
	4,000	$1.7(0.5)$	$4.2(0.6)$	$121(13)$	$174(0.7)$	$24,643(570)$
	7,000	$1(0.2)$	$4.4(0.8)$	$106(6)$	$174(1.2)$	$20,586(601)$
	4000	$1.32(0.5)$	$3.1(1.46)$	$108(4.8)$	$170(2.8)$	$17,974(1,199)$
	7,000	$1.04(0.2)$	$2.58(1.3)$	$107(6.9)$	$170(1.6)$	$14,584(1,232)$
	10,000	$1(0)$	$2.5(1)$	$106(5.1)$	$170(1.7)$	$11,566(1,222)$
	7,000	$1.33(0.5)$	$5.1(1.6)$	$112(13)$	$156(5)$	$8,844(1,424)$
13,000	10,000	$1.06(0.2)$	$4.34(0.95)$	$109(12)$	$156(4.2)$	$5,634(1,586)$
	13,000	$1(0)$	$4(0.6)$	$108(11)$	$156(4)$	$2,731(1,738)$

Table shows show MEAN (SD) of 100 simulations with the highest profit of the entrant π_{E}.

Results

C_{t}^{\prime}	C_{t}^{E}	m^{E}	n^{E}	p^{E}	p^{\prime}	π^{E}
7,000	1,000	$2.2(0.4)$	$4.6(1)$	$128(10)$	$174(1)$	$31,160(932)$
	4,000	$1.7(0.5)$	$4.2(0.6)$	$121(13)$	$174(0.7)$	$24,643(570)$
	7,000	$1(0.2)$	$4.4(0.8)$	$106(6)$	$174(1.2)$	$20,586(601)$
10,000	4000	$1.32(0.5)$	$3.1(1.46)$	$108(4.8)$	$170(2.8)$	$17,974(1,199)$
	7,000	$1.04(0.2)$	$2.58(1.3)$	$107(6.9)$	$170(1.6)$	$14,584(1,232)$
	10,000	$1(0)$	$2.5(1)$	$106(5.1)$	$170(1.7)$	$11,566(1,222)$
	7,000	$1.33(0.5)$	$5.1(1.6)$	$112(13)$	$156(5)$	$8,844(1,424)$
13,000	10,000	$1.06(0.2)$	$4.34(0.95)$	$109(12)$	$156(4.2)$	$5,634(1,586)$
	13,000	$1(0)$	$4(0.6)$	$108(11)$	$156(4)$	$2,731(1,738)$

Table shows show MEAN (SD) of 100 simulations with the highest profit of the entrant π_{E}.

Departure times $\left(C_{t}^{\prime}=7,000\right)$

Departure times $\left(C_{t}^{\prime}=10,000\right)$

Departure times $\left(C_{t}^{\prime}=13,000\right)$

Conclusion

A model of long-distance passenger rail service that finds equilibrium fares and timetables.

For stylized versions of the model, the efficiency of the algorithm is tested using Salop model.

Conclusion

A model of long-distance passenger rail service that finds equilibrium fares and timetables.

For stylized versions of the model, the efficiency of the algorithm is tested using Salop model.

The monopoly version of the model seems to give relatively reliable results (but it is hard to test).

Conclusion

A model of long-distance passenger rail service that finds equilibrium fares and timetables.

For stylized versions of the model, the efficiency of the algorithm is tested using Salop model.

The monopoly version of the model seems to give relatively reliable results (but it is hard to test).

Modeling entry (competition) is difficult - problems:

- unknown order in the choice of departure times
- price cycles

Conclusion

A model of long-distance passenger rail service that finds equilibrium fares and timetables.

For stylized versions of the model, the efficiency of the algorithm is tested using Salop model.

The monopoly version of the model seems to give relatively reliable results (but it is hard to test).

Modeling entry (competition) is difficult - problems:

- unknown order in the choice of departure times
- price cycles

Future work

Test other algorithms (entry algorithms/genetic algorithms). Implement local pricing.

Calibrate the model using data from Czech or Slovak markets.
Estimate the demand side of the model.

